Antiapoptotic signalling by the insulin-like growth factor I receptor, phosphatidylinositol 3-kinase, and Akt.
نویسندگان
چکیده
We have found that insulin-like growth factor I (IGF-I) can protect fibroblasts from apoptosis induced by UV-B light. Antiapoptotic signalling by the IGF-I receptor depended on receptor kinase activity, as cells overexpressing kinase-defective receptor mutants could not be protected by IGF-I. Overexpression of a kinase-defective receptor which contained a mutation in the ATP binding loop functioned as a dominant negative and sensitized cells to apoptosis. The antiapoptotic capacity of the IGF-I receptor was not shared by other growth factors tested, including epidermal growth factor (EGF) and thrombin, although the cells expressed functional receptors for all the agonists. However, EGF was antiapoptotic for cells overexpressing the EGF receptor, and expression of activated pp60v-src also was protective. There was no correlation between protection from apoptosis and activation of mitogen-activated protein kinase, p38/HOG1, or p70S6 kinase. On the other hand, protection by any of the tyrosine kinases against UV-induced apoptosis was blocked by wortmannin, implying a role for phosphatidylinositol 3-kinase (PI3 kinase). To test this, we transiently expressed constitutively active or kinase-dead PI3 kinase and found that overexpression of activated phosphatidylinositol 3-kinase (PI3 kinase) was sufficient to provide protection against apoptosis. Because Akt/PKB is believed to be a downstream effector for PI3 kinase, we also examined the role of this serine/threonine protein kinase in antiapoptotic signalling. We found that membrane-targeted Akt was sufficient to protect against apoptosis but that kinase-dead Akt was not. We conclude that the endogenous IGF-I receptor has a specific antiapoptotic signalling capacity, that overexpression of other tyrosine kinases can allow them also to be antiapoptotic, and that activation of PI3 kinase and Akt is sufficient for antiapoptotic signalling.
منابع مشابه
Mammalian target of rapamycin inhibitors activate the AKT kinase in multiple myeloma cells by up-regulating the insulin-like growth factor receptor/insulin receptor substrate-1/phosphatidylinositol 3-kinase cascade.
Mammalian target of rapamycin (mTOR) inhibitors, such as rapamycin and CCI-779, have shown preclinical potential as therapy for multiple myeloma. By inhibiting expression of cell cycle proteins, these agents induce G1 arrest. However, by also inhibiting an mTOR-dependent serine phosphorylation of insulin receptor substrate-1 (IRS-1), they may enhance insulin-like growth factor-I (IGF-I) signali...
متن کاملInsulin-like growth factor-1 receptor activation inhibits oxidized LDL-induced cytochrome C release and apoptosis via the phosphatidylinositol 3 kinase/Akt signaling pathway.
OBJECTIVE We have shown previously that oxidized LDL decreases insulin-like growth factor-1 (IGF-1) and IGF-1 receptor expression in vascular smooth muscle cells and that IGF-1 and IGF-1 receptor expression are reduced in the deep intima of early atherosclerotic lesions. Because oxidized LDL is potentially important for the depletion of vascular smooth muscle cells contributing to plaque destab...
متن کاملInsulin-like growth factor I is a dual effector of multiple myeloma cell growth.
Multiple myeloma (MM) is an invariably fatal disease that accounts for approximately 1% to 2% of all human cancers. Surprisingly little is known about the cellular pathways contributing to growth of these tumors. Although the cytokine interleukin-6 has been suggested to be the major stimulus for myeloma cell growth, the role of a second potential growth factor, insulin-like growth factor I (IGF...
متن کاملProtein kinase B/AKT 1 plays a pivotal role in insulin-like growth factor-1 receptor signaling induced 3T3-L1 adipocyte differentiation.
During 3T3-L1 preadipocyte differentiation induction, the insulin-stimulated insulin-like growth factor-1 (IGF-1) receptor signal is responsible for the induction of adipocyte differentiation. Treatment with inhibitors of phosphatidylinositol 3-kinase, LY294002 or wortmannin, leads to the complete blockade of adipocyte differentiation in 3T3-L1 preadipocytes. Of the three factors (1-methyl-3-is...
متن کاملModulation of caveolin-1 expression can affect signalling through the phosphatidylinositol 3-kinase/Akt pathway and cellular proliferation in response to insulin-like growth factor I.
The IGFs mediate their effects on cell function through the type I IGF receptor and numerous intracellular signalling molecules, including the phosphatidylinositol 3-kinase (PI-3K)/Akt pathway. The type I IGF receptor also binds to the caveolae protein caveolin-1, but the impact of caveolae on IGF/PI-3K/Akt signalling remains controversial. We have examined the effect of complete (knockout) and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular and cellular biology
دوره 17 3 شماره
صفحات -
تاریخ انتشار 1997